33 research outputs found

    The interaction between vaginal microbiota, cervical length, and vaginal progesterone treatment for preterm birth risk

    Get PDF
    © The Author(s) 2017. Background: Preterm birth is the primary cause of infant death worldwide. A short cervix in the second trimester of pregnancy is a risk factor for preterm birth. In specific patient cohorts, vaginal progesterone reduces this risk. Using 16S rRNA gene sequencing, we undertook a prospective study in women at risk of preterm birth (n = 161) to assess (1) the relationship between vaginal microbiota and cervical length in the second trimester and preterm birth risk and (2) the impact of vaginal progesterone on vaginal bacterial communities in women with a short cervix. Results: Lactobacillus iners dominance at 16 weeks of gestation was significantly associated with both a short cervix < 25 mm (n = 15, P < 0.05) and preterm birth < 34+0 weeks (n = 18; P < 0.01; 69% PPV). In contrast, Lactobacillus crispatus dominance was highly predictive of term birth (n = 127, 98% PPV). Cervical shortening and preterm birth were not associated with vaginal dysbiosis. A longitudinal characterization of vaginal microbiota (< 18, 22, 28, and 34 weeks) was then undertaken in women receiving vaginal progesterone (400 mg/OD, n = 25) versus controls (n = 42). Progesterone did not alter vaginal bacterial community structure nor reduce L. iners-associated preterm birth (< 34 weeks). Conclusions: L. iners dominance of the vaginal microbiota at 16 weeks of gestation is a risk factor for preterm birth, whereas L. crispatus dominance is protective against preterm birth. Vaginal progesterone does not appear to impact the pregnancy vaginal microbiota. Patients and clinicians who may be concerned about "infection risk" associated with the use of a vaginal pessary during high-risk pregnancy can be reassured

    HIV-1 subtype C transmitted founders modulate dendritic cell inflammatory responses

    Get PDF
    Background Heterosexual transmission remains the main route of HIV-1 transmission and female genital tract (FGT) inflammation increases the risk of infection. However, the mechanism(s) by which inflammation facilitates infection is not fully understood. In rhesus macaques challenged with simian immunodeficiency virus, dendritic cell (DC) mediated recruitment of CD4+ T cells to the FGT was critical for infection. The aim of this study was to delineate the mechanisms underlying DC-mediated HIV infection by comparing chemokine and pro-inflammatory cytokine production in response to transmitted founder (TF) and chronic infection (CI) Envelope (Env) pseudotyped viruses (PSV). Results Monocyte-derived DCs (MDDCs) were stimulated with PSV and recombinant gp140 representing matched TF and CI pairs of four individuals and cytokine secretion measured by multiplex immuno-assay. We found that 4/9 Env induced robust MDDC inflammatory responses and of those, three were cloned from TFs. Overall, TF Env induced MDDCs from healthy donors to secrete higher concentrations of inflammatory cytokines and chemokines than those from CI, suggesting TF Env were better inducers of inflammation. Assessing the signalling pathway associated with inflammatory cytokines, we found that PSV of matched TF and CI variants and a gp140 clone activated ERK and JNK to similar levels. Recombinant soluble DC-SIGN inhibited cytokine release and activation of ERK by PSV, suggesting that Env-DC-SIGN binding was partly involved in MDDC stimulation. Therefore, Env clones might differentially stimulate MDDC immune responses via alternative, yet unidentified signalling pathways. Conclusion Overall, this could suggest that the genetics of the virus itself influences inflammatory responses during HIV infection. In the absence of pre-existing infections, induction of greater inflammatory response by TFs might favour virus survival within the healthy FGT by driving an influx of target cells to sites of infection while suppressing immune responses via IL-10

    Changes in concentrations of cervicovaginal immune mediators across the menstrual cycle: a systematic review and meta-analysis of individual patient data

    Get PDF
    BACKGROUND: Hormonal changes during the menstrual cycle play a key role in shaping immunity in the cervicovaginal tract. Cervicovaginal fluid contains cytokines, chemokines, immunoglobulins, and other immune mediators. Many studies have shown that the concentrations of these immune mediators change throughout the menstrual cycle, but the studies have often shown inconsistent results. Our understanding of immunological correlates of the menstrual cycle remains limited and could be improved by meta-analysis of the available evidence. METHODS: We performed a systematic review and meta-analysis of cervicovaginal immune mediator concentrations throughout the menstrual cycle using individual participant data. Study eligibility included strict definitions of the cycle phase (by progesterone or days since the last menstrual period) and no use of hormonal contraception or intrauterine devices. We performed random-effects meta-analyses using inverse-variance pooling to estimate concentration differences between the follicular and luteal phases. In addition, we performed a new laboratory study, measuring select immune mediators in cervicovaginal lavage samples. RESULTS: We screened 1570 abstracts and identified 71 eligible studies. We analyzed data from 31 studies, encompassing 39,589 concentration measurements of 77 immune mediators made on 2112 samples from 871 participants. Meta-analyses were performed on 53 immune mediators. Antibodies, CC-type chemokines, MMPs, IL-6, IL-16, IL-1RA, G-CSF, GNLY, and ICAM1 were lower in the luteal phase than the follicular phase. Only IL-1α, HBD-2, and HBD-3 were elevated in the luteal phase. There was minimal change between the phases for CXCL8, 9, and 10, interferons, TNF, SLPI, elafin, lysozyme, lactoferrin, and interleukins 1β, 2, 10, 12, 13, and 17A. The GRADE strength of evidence was moderate to high for all immune mediators listed here. CONCLUSIONS: Despite the variability of cervicovaginal immune mediator measurements, our meta-analyses show clear and consistent changes during the menstrual cycle. Many immune mediators were lower in the luteal phase, including chemokines, antibodies, matrix metalloproteinases, and several interleukins. Only interleukin-1α and beta-defensins were higher in the luteal phase. These cyclical differences may have consequences for immunity, susceptibility to infection, and fertility. Our study emphasizes the need to control for the effect of the menstrual cycle on immune mediators in future studies
    corecore